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A B S T R A C T

Purpose
Medulloblastoma comprises four distinct molecular subgroups: WNT, SHH, Group 3, and Group 4.
Current medulloblastoma protocols stratify patients based on clinical features: patient age,
metastatic stage, extent of resection, and histologic variant. Stark prognostic and genetic
differences among the four subgroups suggest that subgroup-specific molecular biomarkers could
improve patient prognostication.

Patients and Methods
Molecular biomarkers were identified from a discovery set of 673 medulloblastomas from 43 cities
around the world. Combined risk stratification models were designed based on clinical and
cytogenetic biomarkers identified by multivariable Cox proportional hazards analyses. Identified
biomarkers were tested using fluorescent in situ hybridization (FISH) on a nonoverlapping
medulloblastoma tissue microarray (n � 453), with subsequent validation of the risk stratifica-
tion models.

Results
Subgroup information improves the predictive accuracy of a multivariable survival model
compared with clinical biomarkers alone. Most previously published cytogenetic biomarkers
are only prognostic within a single medulloblastoma subgroup. Profiling six FISH biomarkers
(GLI2, MYC, chromosome 11 [chr11], chr14, 17p, and 17q) on formalin-fixed paraffin-embedded tissues,
we can reliably and reproducibly identify very low-risk and very high-risk patients within SHH, Group 3, and
Group 4 medulloblastomas.

Conclusion
Combining subgroup and cytogenetic biomarkers with established clinical biomarkers substantially
improves patient prognostication, even in the context of heterogeneous clinical therapies. The
prognostic significance of most molecular biomarkers is restricted to a specific subgroup. We have
identified a small panel of cytogenetic biomarkers that reliably identifies very high-risk and very
low-risk groups of patients, making it an excellent tool for selecting patients for therapy
intensification and therapy de-escalation in future clinical trials.
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INTRODUCTION

Medulloblastoma, the most common malignant childhood brain tu-
mor, is an embryonal tumor with a peak incidence in early childhood.
Current therapy entails surgical resection, craniospinal irradiation,
and high-dose chemotherapy. Risk stratification is based primarily
on clinical variables, with high-risk patients identified as having
leptomeningeal metastases at presentation and/or an incomplete
resection.1-3 Unfortunately, most survivors are left with long-term
disabilities secondary to the disease and treatment.4-6 Clinicians
have hypothesized that improved patient prognostication could
enable therapy intensification in high-risk patients and therapy
de-escalation to maximize quality of life in lower-risk patients.

Numerous publications have attempted to identify biomarkers
to either support or supplant clinical risk stratification.2,7-14 Mutations
of specific genes such as CTNNB and TP53 have shown prognostic
significance.15-19 Additional candidates include medulloblastoma-
overexpressed genes such as TRKC, ERBB2, and FSTL5.20-25 Several
DNA copy-number aberrations have also been purported as biomark-
ers, although the results have often been conflicting.15,26-48 These
aberrations are summarized in Table 1. Few of these putative molec-
ular biomarkers have been validated in prospective clinical trials.

It is now recognized that medulloblastoma is a collection of
heterogeneous entities with disparate demographics, transcriptomes,
genetics, and clinical outcomes.2,28,32,49-60 According to international
consensus, the principle subgroups of medulloblastoma are WNT,
SHH, Group 3, and Group 4.52 Because earlier prognostic biomarker
studies did not account for these subgroups, we hypothesized that
some of the disparate biomarker findings could have resulted from
differential subgroup representation among studies. Several previ-
ously reported biomarkers were in fact enriched within a specific
subgroup of the disease (eg, monosomy 6 in WNT tumors, MYC
amplification in Group 3 tumors). In cases where a biomarker is
prognostic across all medulloblastomas, but the prognostic impact is
driven by a single subgroup, we suggest that the marker be designated
as subgroup driven. These surrogate markers are replaceable by sub-

group status. In cases where a biomarker is variably or not effective
across the spectrum of medulloblastomas but is valid only within a
specific subgroup, we suggest that it be designated as subgroup spe-
cific. Such biomarkers are prognostically informative only within spe-
cific medulloblastoma subgroups.

To determine whether subgroup affiliation and cytogenetic bio-
markers could support or supplant clinical variables for prognostica-
tion in patients with medulloblastoma, we assembled an international
discovery cohort of 673 medulloblastomas through MAGIC (Medul-
loblastoma Advanced Genomics International Consortium), for
which we had both clinical follow-up and whole-genome copy-
number data. To begin, we identified subgroup-specific copy-number
aberrations (CNAs) and integrated them with clinical variables to
develop subgroup-specific risk models based on the discovery cohort.
To validate our models and ensure that our technique was generaliz-
able to routine pathology laboratories, we then studied a panel of six
cytogenetic biomarkers (GLI2, MYC, chromosome 11 [chr11], chr14,
17p, and 17q) using interphase fluorescent in situ hybridization
(FISH) on a formalin-fixed paraffin-embedded (FFPE) medulloblas-
toma tissue microarray (TMA) that included 453 medulloblastomas
treated at a single center and did not overlap with the discovery cohort.

Our analysis of � 1,000 patients with medulloblastoma clearly
demonstrates that subgroup affiliation can improve prognostica-
tion with clinical variables and that a majority of published molec-
ular biomarkers are relevant only within a single subgroup. The
combination of clinical variables, subgroup affiliation, and six
cytogenetic markers analyzed on FFPE tissues can achieve an un-
precedented level of prognostic prediction for patients that is prac-
tical, reliable, and reproducible.

PATIENTS AND METHODS

Tumor Material and Patient Characteristics

A discovery set of 673 medulloblastoma samples with clinical follow-up
was acquired retrospectively from 43 cities around the world. These samples

Table 1. Previously Reported Prognostic Molecular Markers in MB

Marker

Previous Studies Our Study

Cohort Prognosis Validated MB (P) SHH (P) Group 3 (P) Group 4 (P)

1q gain MB26,27 Poor No .61 .59 .018 .33
Chr2 gain SHH30 Poor No .16 .66 .17 .49
3q gain MB,32 SHH32 Poor No .14 .20 .80 —
6q gain MB31 Poor No .61 .30 .94 .19
Chr6(q) loss MB15,31,34 Good SGD .002 .90 .73 —
10q loss MB,32,35 SHH30 Poor SGS .012 .001 .23 .082
17p loss MB,26,32,36-40 SHH,30,32 Group 432 Poor SGS .003 .011 .030 .37
17q gain MB,31,32,35,40 SHH,30 Group 3,32 Group 432 Poor SGS .095 — .049 .72
Iso17q MB31,35,38,41 Poor SGS .005 — .008 .81
CDK6 amplification MB32,40 Poor No .51 .36 .17 .55
GLI2 amplification SHH30 Poor SGS < .001 .001 — —
MYC amplification MB31,42-46 Poor SGS < .001 — .011 .37
MYCN amplification MB,31,44 SHH,32 Group 432 Poor SGS .92 .002 — .24
OTX2 amplification MB47 Poor No .61 — .46 .77

NOTE. Bold font indicates significance; — indicates event not observed at sufficient frequency (n � 1).
Abbreviations: chr, chromosome; iso, isochromosome; MB, medulloblastoma (across all subgroups); SGD, subgroup driven; SGS, subgroup specific.
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were copy-number profiled on the Affymetrix SNP6 platform (Santa Clara,
CA) to identify potential biomarkers.28 An independent validation set of 453
samples with clinical follow-up on a TMA was analyzed using FISH as previ-
ously described.53 Tumors were classified based on signature marker expres-
sion into molecular subgroups as previously described61; additional tumors
were classified based on cytogenetic aberrations using standard condi-
tional probability models. Subgroup affiliation was not available for 162
discovery samples. The validation set additionally included 50 WNT tu-
mors not on the TMA. Details on clinical data are listed in Data Supple-
ment 1, along with the availability of clinical and cytogenetic data. Nucleic
acid isolation, TMA construction, and �-catenin mutation analysis were
performed as previously described.28

Prognostic Biomarker Identification

Cytogenetic events and CNAs were identified as previously described in
the discovery set.28 Subsequent to biomarker discovery, cross validation was
performed to estimate the reproducibility of the candidates in an independent
cohort, with multiple-hypothesis correction. Additionally, sample size esti-
mates for prospective trials of the biomarkers were calculated based on the
observed hazard ratios. Additional details are available in Data Supplement 1.

Statistical Analyses

Patient survivals were analyzed using the Kaplan-Meier method. The
predictive values of biomarkers were assessed through time-dependent re-
ceiver operating characteristic analyses. Details of the survival analyses and risk
model selections are available in Data Supplement 1.

RESULTS

Prognostic Significance of Clinical Variables Within

Medulloblastoma Subgroups

Many prior medulloblastoma biomarker studies were limited by
sample size. Our study included 1,126 patients with medulloblastoma
(673 discovery plus 453 validation patients; Data Supplement 1),
which is more than double the sample size of any prior medulloblas-
toma biomarker study, and it is one of few studies to include a valida-
tion cohort (Data Supplement 2). Although the discovery cohort
accumulated by MAGIC consists of medulloblastomas gathered from
43 different treating centers from around the world, the subgroup-
specific outcomes mirror those previously published, with good out-
comes for patients with WNT, poor outcomes for those with Group 3,
and intermediate outcomes for those with SHH and Group 4 medul-
loblastomas (Data Supplement 2), suggesting that the discovery co-
hort was a representative sample (Data Supplement 1).

To assess long-term survivors, patients with WNT medulloblas-
toma were observed for up to 10 years, and only two deaths were
observed among 53 patients, both resulting from tumor recurrence
(Fig 1A; Appendix Fig A1A, online only; Data Supplement 1). Among
those with SHH tumors, there were significantly better outcomes
among adult patients as compared with children or infants (Fig 1B;
Appendix Fig A1B, online only). Infants with Group 4 tumors had
significantly worse outcomes than children or adults (Fig 1B; Appen-
dix Fig A1B, online only), suggesting that radiation therapy is critical
in the treatment of Group 4 medulloblastoma. There was no consis-
tent association between sex and prognosis in any of the four sub-
groups (Data Supplement 1). Desmoplastic histology indicated a
more favorable prognosis than classic histology, which was more
favorable than anaplastic histology among SHH tumors (Data
Supplement 1). Large-cell/anaplastic histology was prognostically
significant for Group 3 medulloblastomas in the discovery cohort
but not in the validation cohort.

Metastatic status was not prognostic for patients with WNT
tumors; however, macroscopic metastasis (M2/M3) was consistently
associated with poor survival in all non-WNT subgroups, although
the clinical effect was modest among patients with Group 4 disease
(Fig 1C; Appendix Fig A1C, online only). Although the prognostic
significance of M0 disease as compared with M2/3 disease was con-
vincing across SHH, Group 3, and Group 4 subgroups, the prognostic
significance of isolated M1 disease (presence of tumor cells in cerebro-
spinal fluid) was less clear (Fig 1C; Appendix Fig A1C, online only;
Data Supplement 1). Isolated M1 disease was not consistently associ-
ated with poor prognosis in the discovery or validation cohort for any
subgroup, which may be the result of small sample sizes. There were
no CNAs in any of the subgroups that were associated with an in-
creased risk of leptomeningeal dissemination (Data Supplement 1).
Overall, many clinical biomarkers continued to exhibit prognostic
significance when medulloblastoma was analyzed in a subgroup-
specific fashion (Data Supplement 1).

Subgroup and Metastatic Status Are the Most

Powerful Predictive Prognostic Biomarkers

Multivariable survival analyses were conducted to examine the
relative predictive value of clinical variables and subgroup affiliation.
Stepwise Cox regressions revealed that subgroup affiliation signifi-
cantly contributed to multivariable survival prediction, on top of a
regression model already parameterized by sex, age, metastatic status,
and histology (Data Supplement 2). Furthermore, Cox proportional
hazards models parameterized with both clinical biomarkers and mo-
lecular subgroups achieved higher accuracy in time-dependent re-
ceiver operating characteristic analyses (Data Supplements 1 and 2).
In isolation, each biomarker had modest prediction accuracy (Data
Supplement 2) compared with the complete multivariable model
(Data Supplement 2). In the complete model, the removal of meta-
static status and subgroup led to the greatest decreases in predictive
accuracy (Data Supplement 2). Taken together, these results suggest
that subgroup affiliation and metastatic status are the most important
predictive biomarkers and that they make nonredundant contribu-
tions to the prediction of survival. We conclude that combining both
clinical and molecular biomarkers can enhance prediction of pa-
tient survival.

Subgroup Specificity of Published

Molecular Biomarkers

Several cytogenetic biomarkers have been associated with patient
survival across medulloblastoma, but their prognostic value has sel-
dom been assessed in the context of medulloblastoma subgroups
(Table 1). Monosomy for chromosome (chr) 6 is associated with
improved survival across medulloblastoma in toto (Fig 2A; Data Sup-
plement 1). However, the prognostic value of chr6 loss can be com-
pletely attributed to its enrichment in WNT medulloblastomas (Fig
2B; Data Supplement 1), because loss of chr6 has no prognostic value
among patients with WNT or non-WNT tumors when compared
with their respective controls with balanced chr6. We suggest that
monosomy 6 is a subgroup-driven biomarker; its prognostic signifi-
cance is driven by its enrichment in a particular subgroup, and it thus
holds no further significance in subgroup-specific analysis. Further-
more, these results would add a note of caution to using monosomy 6
as the lone diagnostic criterion for WNT medulloblastoma, because it
was also observed in non-WNT medulloblastomas (seven [14%] of 49
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monosomy 6 medulloblastomas were not in WNT subgroup), and
monosomy 6 was only present in 42 (79%) of 53 WNT tumors. The
prognostic role of isochromosome (iso) 17q has been controversial;
for our cohort in toto, iso17q was a statistically significant predictor of

poor outcome (Fig 2C). However, subgroup-specific analysis demon-
strated that iso17q was highly prognostic for Group 3 but not for
Group 4 medulloblastoma (Fig 2D), indicating that it is a subgroup-
specific molecular biomarker. Similarly, although 10q loss was a
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modestly significant predictor of poor outcome across medulloblas-
tomas (Fig 2E), its prognostic power was limited to SHH tumors in a
subgroup-specific analysis (Appendix Figs A2A and A2B, online
only). We conclude that determination of subgroup affiliation is cru-
cial in the evaluation and implementation of molecular biomarkers
for patients with medulloblastoma (Table 1; Data Supplement 1),
because some putative biomarkers are merely enriching for a specific
subgroup (ie, subgroup driven), whereas most others are significant
only within a specific subgroup (ie, subgroup specific).

Patients With SHH Tumors Can Be Stratified Into

Three Distinct Risk Groups

We identified 11 CNAs that were prognostically significant in our
SHH medulloblastoma discovery set (Appendix Figs A3A to A3D,
online only; Data Supplement 1) in univariable survival analyses.

Given the considerable number of candidates, the reproducibility of
the identified biomarkers was assessed through cross validation to
facilitate candidate prioritization, and the sample sizes required for
prospective trials were estimated for future studies (Data Supplement
1). Specific amplifications but not broad gains encompassing GLI2 or
MYCN were associated with poor prognosis (Appendix Figs A3A and
A3B, online only; Data Supplement 1). Loss of chr14q conferred
significantly inferior survival (Appendix Fig A3C, online only). There
was no minimal region of deletion on chr14 in patients with SHH
tumors (Data Supplement 1), and recent medulloblastoma rese-
quencing efforts have not identified any recurrent single-nucleotide
variants on chr14 in SHH medulloblastoma.28,54,56,57,62 The presence
of chromothripsis (ie, chromosome shattering) was associated with
worse survival in those with SHH tumors (Appendix Fig A3D, on-
line only).17
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To integrate the individual biomarkers into a risk stratification
model, multivariable Cox analyses were performed on all significant
biomarkers. Through multiple stepwise regression procedures, a con-
sensus set of biomarkers was selected for inclusion in the model in an
unbiased manner. The proposed risk stratification scheme represents
the model that was most consistent with available data in the discovery
cohort, from among many possible alternatives (Figs 3A and 3B; Data
Supplement 1). GLI2 amplification, 14q loss, and leptomeningeal
dissemination identified high- and standard-risk patients. Specifically,
GLI2 amplification alone identified patients with poor prognosis (Figs
3A and 3B; Data Supplement 1). Absence of these markers defined a
low-risk group of patients who exhibited survivorship reminiscent of
patients with WNT tumors. Importantly, none of the covariates,
particularly age and anaplastic histology, could explain the survival
differences observed among risk groups (Figs 3A and 3B; Data

Supplement 1). Direct application of the proposed risk stratifica-
tion scheme on the independent validation cohort yielded distinct
survivorship rates for the three risk groups, thereby validating the
model (Fig 3D).

Two additional stratification schemes were constructed using
only clinical biomarkers or only cytogenetic markers; however, the
proposed model, which combines both types of biomarkers,
yielded the highest accuracy (Fig 3C; Data Supplement 1). Further-
more, the accuracy of the combined risk model was drastically
reduced when applied across patients with non-SHH tumors, fur-
ther underscoring the importance of taking subgroup into consid-
eration during risk stratification. We conclude that by using two
molecular biomarkers (GLI2 and 14q FISH) and metastatic status,
we can practically and reliably predict prognosis for patients with
SHH medulloblastoma.

BA

C

D

0
Ov

er
al

l S
ur

vi
va

l (
pr

ob
ab

ili
ty

)

Time (months)

1.0

0.8

0.6

0.4

0.2

4824 6012 36

No. at risk
Standard risk 37 29 25 20 16 13
High risk 53 32 27 20 15 14

0

Ov
er

al
l S

ur
vi

va
l (

pr
ob

ab
ili

ty
) 1.0

0.8

0.6

0.4

0.2

No. at risk
Standard risk 18 18 13 11 8 3
High risk 70 54 32 24 17 13

Time (months)

4824 6012 36

Discovery

Validation

P = .013
(n = 88)

Standard risk
High risk

P < .001
(n = 90)

Clinical + molecular
Molecular

Clinical
Clinical + molecular

Molecular
Clinical

0.5 0.6 0.7 0.8

AUC

Gr
ou

p 
3

N
on

-G
ro

up
 3

Standard risk
High risk

Infant Child Adult Not anaplastic AnaplasticFemale MaleM+M0

Group 3

None

High risk

MYC amplified
or

iso17q
or
M+

Standard risk

5.76× risk

MYC amp

iso17q

M+

Sex

Age

Anaplastic

******
***
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Metastatic Status, Iso17q, and MYC

Amplification Identify High-Risk Patients With

Group 3 Medulloblastoma

In patients with Group 3 tumors, iso17q and MYC amplification
remained the only cytogenetic markers associated with poor survival
(Appendix Figs A4A and A4B, online only), whereas chr8q loss and
chr1q gain were the only good prognosis markers (Appendix Fig A4C,
online only; Data Supplement 1). In multivariable survival analyses,
patients with metastasis, iso17q, or MYC amplification represented
the high-risk group (Figs 4A and 4B). Critically, absence of these
markers identified a population of patients with Group 3 tumors with
favorable prognosis. The risk groups were not associated with any
clinical covariates, including age (Figs 4A and 4B; Data Supplement 1).
Consistent with the findings in patients with SHH tumors, optimal
risk stratification of those with Group 3 tumors required the use of

both clinical and molecular prognostic markers, which have little
prognostic value outside of Group 3 (Fig 4C; Data Supplement 1). Our
proposed risk stratification scheme was validated on the nonoverlap-
ping validation cohort using three molecular biomarkers (MYC, 17p,
and 17q FISH) and metastatic status (Fig 4D).

Identification of a Low-Risk Group of Patients With

Metastatic Group 4 Medulloblastoma

Patients with Group 4 tumors with whole-chromosome loss of
chr11 or gain of chr17, in addition to 10p loss, exhibited better survival
under univariable Cox models (Appendix Fig A5A, online only; Data
Supplement 1). There was no cytogenetic marker associated with poor
prognosis (Data Supplement 1). Specifically, neither MYCN gain nor
amplification was associated with poorer survival in those with Group
4 tumors, in stark contrast to patients with SHH tumors, reinforcing
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the distinction in their underlying biology (Appendix Fig A5B, online
only; Data Supplement 1). Similarly, none of the cytogenetic biomark-
ers identified for patients with Group 3 tumors (eg, iso17q) had any
prognostic value for those with Group 4 tumors (Data Supplement 1).
After unbiased model selection, the consensus set of biomarkers re-
sulted in a risk stratification scheme in which leptomeningeal dissem-
ination identified high-risk patients with Group 4 tumors, except in
the context of chr11 loss or chr17 gain (Figs 5A and 5B). The biology
underlying chr11 loss was not apparent, because there was no obvious
minimal common region of deletion (Data Supplement 1), nor were
there any recurrent single-nucleotide variants on chr11 reported. Pa-
tients with Group 4 tumors with either chr17 gain or chr11 loss,
irrespective of metastatic status, exhibited excellent survivorship in
both the discovery and validation cohorts (Figs 5B and 5D), and the
survival differences were not explainable by covariates (Data Supple-
ment 1). Consistent with other subgroups, the risk stratification
model using both clinical and molecular biomarkers achieved the
highest accuracy (Fig 5C). Critically, the cytogenetic biomarkers iden-
tified low-risk patients with Group 4 tumors who would be otherwise
designated as high risk by evidence of metastasis and/or anaplastic
histology; this finding could not be extrapolated to patients with SHH
or Group 3 medulloblastoma (Figs 5A to 5C; Data Supplement 1). We
conclude that through the use of three molecular biomarkers (chr11,
17p, and 17q FISH) and metastatic status, we can reliably predict the
prognosis of patients with Group 4 medulloblastoma.

DISCUSSION

Current consensus identifies the existence of four major subgroups of
medulloblastoma, with excellent prognosis for those with WNT tu-
mors, intermediate prognosis for those with SHH and Group 4 tu-
mors, and poor prognosis for those with Group 3 tumors.32,52

However, early evidence suggests clinical heterogeneity within these
core subgroups.7,30,63 Practical and reliable prognostication of risk
could allow for therapy intensification in high-risk children to im-
prove survival and de-escalation of therapy in low-risk children so as
to avoid the significant complications of therapy. However, the ma-
jority of published medulloblastoma biomarker studies included only
small cohorts of patients, were not validated on nonoverlapping co-
horts, and were performed in the presubgrouping era. Our prognostic
study of 1,123 medulloblastomas, using techniques (eg, FISH) com-
patible with FFPE tissues, has identified clinically applicable risk strat-
ification for SHH, Group 3, and Group 4 medulloblastomas.

We have demonstrated that medulloblastoma subgroup affilia-
tion is significantly more informative for predicting patient outcome
than existing clinical variables and that by incorporating subgroup
status with conventional clinical parameters for risk stratification, the
accuracy of survival prediction can be dramatically improved. More-

over, we have proposed, tested, and validated novel subgroup-specific
risk stratification models incorporating both clinical and molecular
variables. These models performed robustly both in the discovery
cohort consisting of heterogeneously treated groups of patients and in
a nonoverlapping validation cohort of patients treated at a single
institution according to standardized treatment protocols. Because we
do not have detailed treatment information for patients in the discov-
ery cohort, it is possible that treatment protocols (type, duration, or
intensity) could have affected our results. We suggest that this possi-
bility can only be eliminated through examination of our stratification
model in a sufficiently large prospective cohort. Although our study
used single-nucleotide polymorphism arrays or interphase FISH on
FFPE sections, it is possible that other approaches such as array com-
parative genomic hybridization could also be used to determine the
copy-number status of the six markers.64 Through the incorporation
of current clinical variables, subgroup affiliation, and our six copy-
number prognostic markers, as detailed in Data Supplement 1, rapid
prognostication is feasible in the setting of a regular hospital neuropa-
thology laboratory, making it a clinically utile technique. Because both
subgrouping assays and prognostic FISH markers will need to be
performed in a Clinical Laboratory Improvement Amendments–
approved laboratory, we suggest that these assays be adopted and
optimized in most major neuro-oncology centers, whereas smaller
centers may consider sending tissues for analysis at larger centers. Our
findings demonstrate the utility of incorporating tumor biology into
clinical decision making and offer a novel perspective on risk stratifi-
cation using FISH applicable on paraffin sections; thus, they could be
translated immediately into routine clinical practice.
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Fig A1. (A) Ten-year overall survival curves for WNT medulloblastoma by metastatic status. (B) Overall survival curves for age groups within Group 3 subgroup (infant, age � 3 years;
child, age 3 to � 16 years). (C) Overall survival curves for metastatic status for Group 4 subgroup. Numbers below x-axis represent patients at risk of event; statistical significance
evaluated by log-rank tests; hazard ratio (HR) estimates derived from Cox proportional hazards analyses. NS, not significant.
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Fig A2. Overall survival curves for chromosome 10q (chr10q) status in (A) SHH and (B) non-SHH medulloblastomas; survival differences evaluated by log-rank tests;
hazard ratio (HR) estimates derived from Cox proportional hazards analyses. NS, not significant.
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Fig A3. Clinical prognostication of patients with SHH medulloblastoma. Overall survival curves for (A) GLI2 copy-number status, (B) MYCN copy-number status, (C)
chromosome 14q (chr14q) status, and (D) chromothripsis status. HR, hazard ratio; NS, not significant.
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Fig A4. Clinical prognostication of patients with Group 3 medulloblastoma. Overall survival curves for (A) chromosome 17 (chr17) copy-number aberrations, (B) MYC
copy-number status, and (C) chr8q status. HR, hazard ratio; iso, isochromosome; NS, not significant.
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Fig A5. Clinical prognostication of patients with Group 4 medulloblastoma. Overall survival curves for (A) chromosome 11 (chr11) status and whole chr17 status and
(B) MYCN copy-number status. HR, hazard ratio; NS, not significant.
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